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LETTER TO THE EDITOR 

Illustration of the causal model of quantum statistics 

C Dewdney, A Kyprianidist and J P Vigier 
Institut Henri Poincart, Laboratoire de Physique Thkorique, 11 rue P et M Curie, 75231 
Paris Cedex 05, France 

Received IO July 1984 

Abstract. As an illustration of the causal stochastic interpretation of quantum statistics it 
is shown, in the case of two particles in two harmonic oscillator wavepackets, that the 
different results for observables obtained with different statistics can be explained in terms 
of distinguishable particle motions correlated by the quantum potential. 

In two recent letters (Kyprianidis et a1 1984, Cufaro-Petroni et a1 1984), following the 
line introduced by Tersoff and Bayer (1983) it was shown that quantum statistics result 
from the motion of distinguishable particles correlated by causal non-local actions-at-a- 
distance. The difference between classical Maxwell-Boltzmann ( MB) and quantum 
Bose-Einstein (BE) or Fermi-Dirac (FD) statistics was shown to result from the 
uncontrollable non-local character of stochastic interactions connecting particles 
embedded in Dirac's random aether for the quantum case. Furthermore it was argued 
that FD statistics can be distinguished from BE statistics by the fact that identical 
half-integer spin particles induce repulsive gauge fields in the case of parallel spin 
alignment. This preserves the ni = 0 or 1 occupation numbers of phase-space cells. 

In the present letter we wish to demonstrate explicitly in a typical physical situation 
how the individual motions of particles under the influence of the many-body quantum 
potential lead to different statistical results according to the type of wavefunction 
assumed. The causal interpretation of quantum statistics (Bohm and Hiley 1975, Vigier 
1982, Guerra and Moratov 1983) is thus shown to provide an intuitive understanding 
of quantum statistical results in terms of correlated particle motions, classical statistics 
arising as a special case when the particles are not correlated by the quantum potential. 
The case examined here is the following. Consider a harmonic oscillator potential 
V = kx2/2 = mw2x2/2 and construct by solving the Schrodinger equation a wavepacket 
solution (Bohm 1951) 

+(x, t)=exp(-iot) e x p [ - t ( x - ~ ~ c o s w t ) ~ ]  

x exp[ti(fxi sin 2ot  - ~ X X ,  sin or)]. 

This wavepacket solution is non-dispersive and depending on the time parameter t 
defines in the causal interpretation a set of possible trajectories for a particle located 
at the position x, where xo is the centre of a wavepacket. 

Now consider the case of two particles, one in each of the wavepackets +A(x,, t)  
and IClg(x2, t )  in the harmonic oscillator potential. The packet t,hA(xI, t )  is assumed to 
be centred at xo and, in order to simplify the calculations, the packet +B(& t)  centred 
at -xo. 
t On leave from the University of Crete, Physics Department, Heraklion, Greece. 
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It is clear that depending on the assumed statistics (MB, BE or FD) three wavefunc- 
tions can be written. These are: 

~ M B =  ~ M B $ A ( X I ,  ~)$B(XZ, t ) ,  (2) 

+ B E =  aBE[$A(XI, f)$B(X2, +$B(xI, ?)$A(X2, (3) 

$FD= aFD[$A(XI, r)$B(x2, r)-$B(xI, f)$A(X2, t ) l ,  (4) 

where the a’s are normalisation constants to be determined by the condition 
4 dx, dx, = 1. This yields for the $3 of the form of equation (1) the following results: 

(YMB = (T)-”’, (YBE = [ 2 r (  1 +e-2x’)]-1’2, a F D  = [277( 1 - e-2x; )I-? ( 5 )  

A standard quantum mechanical calculation yields the mean squared separation of 
the particles by evaluating 

00 

((xI - x2)2> = I 4*(x1 - x d 2 4  dxl dx2 
-00 

giving the following three results depending on the statistics obeyed by the particles, 

We clearly see from this that the mean squared separation of the particles is decreased 
in the BE case and increased in the FD case with respect to the MB case. 

The explanation given for these predictions in the purely probabilistic Copenhagen 
interpretation of quantum statistics is evidently: 

(i)  for MB statistics +MB is factorisable so we are dealing with independent particles; 
(ii) for BE and FD statistics when the probability packets overlap in space-time 

then one cannot tell to which packet the particles belong. We have a correlation due 
to this uncertainty. 

At this stage we claim that these results can be interpreted in a much more 
satisfactory way in the frame of the SIQM, where the particles, even if they are 
independent, are thought of as being tied by a permanent non-local action-at-a-distance 
described by the quantum potential 

Q =  -(h2/2m)(A,R/R +A2R/R) 

are submitted to the quantum forces Ff, = V I  Q and FL = V2Q and follow trajectories 
given by pl =VIS, p2=V2S where the wave fields are assumed to have the form 
4 = R e’”/h. If we apply this scheme to the above problem then we find in the M B  
case, the quantum potential 

QMB= -(h2/2m)[(x, -xocos o t )2+(x2+xocos  wt)’-2] 
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which is composed of two additive contributions from each particle separately. There 
the quantum forces acting on each particle 

F L  = aQ/ax, = -(h2/m)(x, - xo cos ut), 

F$=aQ/ax2= -(ri2/m)(x2+xocos or) 

depend only on the particle’s coordinate and can be shown after performing an 
averaging process 

m 
r r  

-a 

and a time average to vanish identically. Thus we see that the two particles (in the 
wavepackets) perform completely independent motions and do not interfere. 

In the case of BE or FD statistics a lengthy but straightforward calculation yields 
the following basic results. 

(a) The quantum potential QFD or QBE cannot be reduced to a form Q =  
Ql(xl )  + Q2(x2) but has the general form Q(x,,  x2) which establishes the real physical 
correlation between the two particles. 

(b) The quantum forces (F6D)1,2 and (FF)1,2 do depend on the coordinates of 
both particles and do not average to zero. The trajectory of each particle depends on 
that of the other and the quantum potential is such that on average the Bose particles 
approach each other more closely in the region of interference or overlap of the wave- 
packets than do the Fermi particles. This is a result of the fact that the two contributions 
to the total wavefunctions interfere with different signs in the two cases leading to 
different quantum potentials, with an interchange of maxima and minima. 

This can be seen by calculating trajectories through numerical integration of the 
equation p i  = m dxi/dt  = V i s  with suitable choice of initial particle positions. A numeri- 
cal integration of this relation gives the particle’s trajectories xl( t )  and x2(t) in the 
harmonic oscillator potential which are represented in figure 1. 

This figure provides us with the basic physical features of the process. The MB 
particles, being independent, possess trajectories that cross one another. They propa- 
gate undisturbed and produce no interference. This is not the case for BE or FD 

particles. They do not cross but from interference patterns in which the two particles 
are on the average closer together in the BE case than in the FD case. In the limiting 
case where the two wavepackets coincide we have 

((XI -x2)2)MB = ((XI -x2)2>BE~ 

the two statistics are equivalent and no interference arises in the BE case. ((x, - x ~ ) ’ ) ~ ~  
no longer has a meaning since c$FD = 0. If the two wavepackets are initially far apart 
i.e. xo large, then all three statistics tend to yield the same result i.e. 

((XI -x2)2)= 1 +4x; cos2 wt 

because the period during which the packets overlap is negligible and the interference 
of the wavepackets, which yields the different statistics and gives rise to the third term 
of equation ( 6 ) ,  becomes infinitely small. We find that the trajectories of the particles 
are the same for each statistic outside the region of overlap; the differences arise within 
it. 
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x , I f )  x , ( f )  x , ( f )  x , ( f )  x , ( f )  x, ( f  1 

Figure 1. An ensemble of two particle trajectories x , ( t ) ,  x 2 ( t )  with initial positions such 
that x2(0) = -x,(O) and a concentration of particle trajectories around the packet maxima. 
( a )  Maxwell-Boltzman ( b )  Bose-Einstein (e )  Fermi-Dirac. 

The correlation effects mediated by the quantum potential between the two particles 
determines their physical behaviour and conditions their different statistical averages 
of physical variables or observables. This can be easily understood in the SIQM where 
particles obeying quantum statistics are constantly submitted to the stochastic random 
motions of the underlying subquantal medium, the Dirac aether (Dirac 1951, 1952). 
The symmetric or antisymmetric character of the system’s wavefunction is a con- 
sequence of the existence (or not) of local repulsive gauge fields and not a first quantum 
mechanical principle. Finally, the factorisability of the wavefunction for M B  statistics 
can be thought of as a consequence of the existence of definite phase relations, such 
that the particle’s motions are in fact independent, which will be studied in a subsequent 
publication. The quantum potential is a useful concept that illustrates the existence 
of the action-at-a-distance correlations of the underlying random chaotic Dirac aether 
and provides an understanding of all quantum phenomena in terms of real motions 
in physical space-time. 

One of us (AK) wants to thank the French Government for a grant and another (CD) 
the British Royal Society for a European Exchange Fellowship that made this research 
possible. 
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